top of page

P.Lara-Gonzalez, T. Kim,  K. Oegema, K. Corbett, A. Desai (2021) A tripartite mechanism catalyzes Mad2-Cdc20 assembly at unattached kinetochores. Science. doi: 10.1126/science.abc1424. 

D.K. Cheerambathur, B. Prevo, T.L. Chow, N. Hattersley, S. Wang, Z Zhao, T. Kim, A. Gerson-Gurwitz, K. Oegema, R. Green, A. Desai (2019) The kinetochore-microtubule coupling machinery is repurposed in sensory nervous system morphogenesis. Dev. Cell. doi: 10.1016/j.devcel.2019.02.002.

 

N. Hattersley, P. Lara-Gonzalez, D. Cheerambathur, J.S. Gomez-Cavazos, T. Kim, B. Prevo, R. Khaliullin, K.Y. Lee, M. Ota, R. Green, K. Oegema, A. Desai. (2018) Employing the one-cell C.elegans embryo to study cell division processes. Methods. Cell. Biol. doi: 10.1016/bs.mcb.2018.03.008

 

S. Mangal, J. Sacher, T. Kim, D. Osorio, F Motegi, A. Carvalho, K. Oegema, E. Zanin, (2018) TPXL-1 activates Aurora A to clear contractile ring components from the polar cortex during cytokinesis. J. Cell Biol. doi:10.1083/jcb.201706021

T. Kim, A. Desai. (2017) Meiosis: The Origins of Bias.  Curr. Biol. doi:10.1016/j.cub.2017.10.055

 

P. Lara-Gonzalez, T. Kim, A. Desai (2017) Taming the Beast: Control of APC/CCdc20-dependent destruction. Cold Spring Harb Symp Quant Biol.  doi:10.1101/sqb.2017.82.033712

 

T. Kim*, P. Lara-Gonzalez*, B. Prevo, F. Meitinger, D. Cheerambathur, K. Oegema, A. Desai (2017) Kinetochores accelerate or delay APC/C activation by directing Cdc20 to opposing fates. Genes Dev. (Cover) doi: 10.1101/gad.302067.117. *equal contribution  

 

K.P. McNally, M.T. Panzica, T. Kim, D.B. Corbets, F. J. McNally. (2016) A Novel Chromosome Segregation Mechanism During Female Meiosis. Mol Biol Cell. pii: mbc.E16-05-0331

 

Lanier, M. H., T. Kim & J. A. Cooper. (2015) CARMIL2 is a Novel Molecular Connection between Vimentin and Actin Essential for Cell Invasion. Mol Biol Cell. doi: 10.1091/mbc.E15-08-0552

 

T. Kim, M.W. Moyle, P. Lara-Gonzalez, C. D. Groot, K. Oegema, A. Desai. (2015) Kinetochore-localized BUB-1/BUB-3 complex promotes anaphase onset in C.elegans. J. Cell Biol. doi:10.1083/jcb.201412035

 

Maton, G., F. Edwards, B. Lacroix, M. Stefanutti, K. Laband, T. Lieury, T. Kim, J. Espeut, J.C. Canman, and J. Dumont. (2015) Kinetochore components are required for central spindle assembly. Nat Cell Biol. doi:10.1038/ncb3150.

 

Kern, D.M., T. Kim, M. Rigney, N. Hattersley, A. Desai, and I.M. Cheeseman. (2015) The outer kinetochore protein KNL-1 contains a defined oligomerization domain in nematodes. Mol. Biol. Cell. 26:229–237. doi:10.1091/mbc.E14-06-1125.

 

Moyle, M.W., T. Kim, N. Hattersley, J. Espeut, D.K. Cheerambathur, K. Oegema, and A. Desai. (2014). A Bub1-Mad1 interaction targets the Mad1-Mad2 complex to unattached kinetochores to initiate the spindle checkpoint. J. Cell Biol. 204:647–657. doi:10.1083/jcb.201311015.

 

Edwards, M., Y. Liang, T. Kim, and J.A. Cooper. (2013) Physiological role of the interaction between CARMIL1 and capping protein. Mol. Biol. Cell. 24:3047–3055. doi:10.1091/mbc.E13-05-0270.

 

T. Kim, G.E. Ravilious , D. Sept., and J.A. Cooper. (2012) Mechanism for CARMIL protein inhibition of heterodimeric actin-capping protein. J. Biol. Chem. 287:15251–15262. doi:10.1074/jbc.M112.345447.

 

Hernandez-Valladares. M*, T. Kim*, B. Kannan, A. Tung, A.H. Aguda, M. Larsson, J.A. Cooper, and R.C. Robinson. (2010) Structural characterization of a capping protein interaction motif defines a family of actin filament regulators. Nat. Struct. Mol. Biol. 17:497–503. doi:10.1038/nsmb.1792.*equal contribution

 

T. Kim, J.A. Cooper, and D. Sept. (2010) The interaction of capping protein with the barbed end of the actin filament. J. Mol. Biol. 404:794–802. doi:10.1016/j.jmb.2010.10.017.

 

B. Shrestha., J.D. Brien, S. Sukupolvi-Petty, S.K. Austin, M.A. Edeling, T. Kim, K.M. O'Brien, C.A. Nelson, S. Johnson, D.H.   Fremont, and M.S. Diamond. (2010) The development of therapeutic antibodies that neutralize homologous and heterologous genotypes of dengue virus type 1. PLoS Pathog. 6:e1000823. doi:10.1371/journal.ppat.1000823.

bottom of page